Y,
\

Y/ FRIGG

The Frigg Framework: Key Concepts & Considerations

An Overview for Prospective Adopters
Revised August 2022

About the Frigg Framework

Frigg is a software framework used by SaaS product leaders to build, deploy, maintain,
and improve integrations faster through an open source model.

About this Overview:

This overview is written for the non-technical SaaS leader. It is a “plain English”
explanation that explores why the Frigg Framework exists, and the context in which
Frigg is a valuable solution to a common challenge: how to provide more and better
integrations faster.

How to read this Overview:

We highly recommend reading this document linearly from start to finish.

Some sections include detailed examples that are indented and italicized.

Section 1A. Business Terms

The ISV world struggles without a common tongue to define integration scenarios and
technologies. Before diving into Frigg and the problem it solves, we suggest reviewing
the terminology that Left Hook uses:

B2B SaaS$: Left Hook lumps a broad range of software products and companies under
the “SaaS” shortcut. We intend to include any B2B software product with an API, even
if it's not technically hosted or a subscription service.

Integration: This unhelpful word has several overlapping meanings. Left Hook
narrowly defines an “integration” to mean “when a software user/customer is
connecting two or more user accounts, each on a discrete, external software tool,
usually via APL.”

Universal Integrations: A universal integration is a self-serve productized software
tool configured via a user-friendly interface. To qualify as universal, the integration
must be installable, configurable, and manageable by a non-technical admin. SaaS
companies refer to these in their marketing as “integrations,” “apps,” “partners,” or
“connectors.” Left Hook adds “universal” to distinguish productized, self-serve
integrations from one-off “custom integrations,” and/or externalized integrations
provided by an IPaaS.

" i

Custom integrations: These are typically built to serve a single organization’s
requirements and are not “productized.” They are usually shipped without any UI, and
the tool's developer remains in control of any configuration choices. The business
customer is dependent on the developer for ongoing improvement or tweaks.

Despite the recent rise of universal integrations, one-off custom integrations remain a
multi-billion dollar business for consultants and professional development
organizations that are sometimes referred to as “System Integrators,” or SIs.

Integration Platforms or IPaaS: This acronym (“integration platforms as-as-service”)
includes a range of software tools designed to solve a comparatively narrow range of
use cases. By definition these are externalized services, hosted and managed outside
of any core Saa$S application. A subset of IPaaS providers brand and sell exclusively to
line-of-business customers (i.e. Zapier). Many others maintain both a direct-to-lob
model as well as an “embedded white-label” model. Read Appendix B for more Left
Hook analysis on why SaaS leaders should embrace yet limit their reliance on IPaaS.

Marketplace & Ecosystem: A typical SaaS will aggregate its universal integrations into
a “Marketplace,” i.e. a gallery or directory. These listings are often exhibited inside the

Frigg Framework Overview August 2022 v3 Page 2 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

product’s UI, on an external marketing page, or both. Some name this an “App Store,”
though others have coined more distinctive monikers like SalesForce’s
“AppExchange.”A SaaS company’s “Ecosystem” is the sum total of its universal
integrations and the business relationships (“technical partners”) behind these tools.

(Note that some partner leaders might expand this “ecosystem” definition to include
agency, consulting, training, and channel/referral/affiliate partners. Left Hook focuses

on technology partnerships powered by APIs, which are usually at the heart of a SaaS
company’s ecosystem strategy.)

Section 1B. Integration Technology Terms

The following terms dive into more technical aspects of Frigg and its interaction with
your core tech stack:

Authentication: Authentication is the control process by which a software user
authorizes access to their account and APIL. Authentication is typically scoped to
enforce either individual permissions and/or permissions that affect an entire
organization’'s account (i.e. at the End Customer Admin level, described below). The
process commonly involves passwords, API keys, or oauth login systems, among other
potential authentication methods.

Configuration: Configuration is our broad term for the range of choices executable by
an ECA (see below) through an integration's UI. After years of dependence on
developers and expensive code tweaks, non-technical business leaders are now eager
to take responsibility for managing integration-related choices.

End Customer Organization (ECO): The single organization paying to use a Saas.

End Customer Admin (ECA): An ECA is an Individual User with elevated account
permissions sufficient to authenticate and configure a universal integration. Since any
universal integration often requires access to the entire organization’s data, an ECA is
typically a high-level user like “Account Owner” or “Administrator.” In rare situations,
an Individual User might be empowered to install a universal integration on their own
user account.

Seamless Permissioning: After logging in to a SaaS product, users expect instant and
ongoing access to all permitted resources, even if those resources are surreptitiously
controlled by multiple and disparate authentication systems. Left Hook strives to help
Saas clients achieve seamless permissioning as a part of any Frigg implementation.

Frigg Framework Overview August 2022 v3 Page 3 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Section 2: Integration Scenario Hierarchy

The integration landscape is complex, confusing, dynamic, and messy. Whenever we
pitch Frigg, SaaS leaders want to understand exactly how it can accelerate integration
development.

While integrations come in many different shapes and sizes, they can be generally
classified into four hierarchical tiers. Each is explained in detail below the graph below.

FRZI;GG Integration Scenario Hierarchy

Your SaaS offers “Fenestrae Opportunities”
> Tier 4: Target Platform > via its own Marketplace/App Store

X Your SaaS builds “Fenestrae Apps”
> Tier 3: Installed Partner >

Distributed via Partner Marketplaces & App Stores

N K Your SaaS offers Ul-native, self-serve integrations
> Tier 2: Ul-Native >

Distributed via Partner Marketplaces & App Stores

Your Saa$ offers basic dev tools like RESTful CRUD APIs,

> Tier 1: Building Blocks >
Event Notifications (Webhooks), & simple iPaaS connectors (i.e. Zapier)

4]
L

© 2021 by Left Hook Inc. All Rights Reserved

Tier 1: “Building Blocks”

Tier 1 identifies fundamental API features required to build integrations. While
seemingly “table stakes” in 2022, a surprising number of SaaS companies still fail to
offer a public API for customer use. And by our count, about 85% of all B2B SaaS
products still lack a public Zapier app.

Sidenote: Our inclusion of integration platforms (particularly Zapier) in Tier 1 could be
confusing, as they necessarily provide a “no-code, self-serve” user experience.
However, because their Ul is external to the SaaS product’s UI and out of its control,
we view these more as “connectors” and API extensions, rather than “UI-Native”
integrations (described below).

Frigg Framework Overview August 2022 v3 Page 4 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Adopting a third party integration platform like Zapier drives additional cost and
requires significant orientation and learning effort from the ECO. In our experience,
ECAs generally prefer “UI-Native” integrations (described below).

Tier 2: “UI-Native”

“The next big thing is the one that makes the last big thing usable.”

-Blake Ross, Co-creator of Mozilla Firefox

Tier 2 describes when one of the two SaaS products (the “Ringmaster” or primary
partner) agrees to provide the necessary authentication and configuration screens
from behind its product’s authentication wall, and thus within its own product UL

The second SaaS product (the “Wing” or “Target”) engages via API only, and doesn’t
contribute substantial engineering effort to the partnership. Note that some UI-Native
integrations are built without the Wing ever becoming aware of the Ringmaster’s
accomplishments. This dynamic is typical with giant companies (i.e. Google) that don’t
invest in proactive partnerships with smaller SaaS partners.

UI-Native Integration: Detailed Example
SaaS Company “A” (CoA) is the Ringmaster. SaaS Company B (CoB) is the “Wing.”

Imagine that an ECA for “BizExample1” (“Biz1”) logs into their CoA account and
clicks into the “Integrations” page to find a gallery of direct/native integrations.

Biz1 clicks on the logo for CoB to initiate the authentication and configuration
flow, i.e. a modal window opens and asks Biz1 to enter CoB authentication
credentials.

Once authenticated, the ECA makes some configuration decisions. When finished,
the ECA returns to CoA’s primary UL The integration is now live and working,
without the ECA ever accessing CoB’s UL

Note that some SaaS veterans refer to UI-Native integrations as “direct” and/or
“native.” These terms are helpful but often confused; “UI-Native” is more precise.

Sophisticated customers often assess the breadth and depth of a prospective ISV's
UI-Native library as a signal for overall robustness. A healthy roster of well-designed
UI-Native integrations is the gold standard for successful SaaS companies. (We'll
further discuss the importance of Tier 2 in a section ahead.)

Frigg Framework Overview August 2022 v3 Page 5 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Tiers 3 & 4: Fenestra “Installed Partners” & “Target Platforms”

As “table stakes” as Tier 1 and Tier 2 are to SaaS success, they are required but not
sufficient. The next frontier entices ECOs, confronts SaaS product leaders, and raises
the technical bar. Until now, the SaaS world had little language to describe these Tier 3
scenarios. To help SaaS leaders better understand, Left Hook is coining new
terminology centered around the unusual word “Fenestra(e).”

Recalling your high school Latin, “Fenestra” (singular) means both “window” and
“opportunity.” It provides an efficient label to encompass the many integration
scenarios already out in the wild that fit the general pattern.

A Fenestra Opportunity Explained:

1. One SaaS product (the “Target Platform” or TP) enables another SaaS product
(“Installed Partner” or “IP") to display data and/or features inside the Target
Platform’s UL Each enabled location is a “Surface.”

2. The Installed Partner builds its “Fenestra App” according to the TP's
requirements. When ready, the IP submits the app to the TP for acceptance
review.

3. Once approved, the TP distributes and promotes the app via its marketplace;
for qualified partners, it co-markets and co-sells as well.

4. ECOs discover the app in the marketplace and self-initiate installation.
Authentication and configuration occur in either UI, depending on TP's
requirements.

5. TP markets its “Fenestra Opportunities” to other prospective IPs and
encourages them to “build to us.”

A detailed example might also help your understanding:

Consider the integration between FreshBooks (FB) and HubSpot (HS), built by
Left Hook. FreshBooks is an invoicing and accounting tool; its typical ECO is a
small business like the fictional “Biz1.” HubSpot is a CRM tool also used by small
businesses.

To be more concrete, let’s stipulate that Biz1 sells laminate flooring to
homeowners. Biz1’s team includes a part-time bookkeeper/invoicing manager, a
part-time IT admin (the “End Customer Admin”), and six account reps who handle
customer relationships (the “Individual Users”).

Frigg Framework Overview August 2022 v3 Page 6 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Biz1 uses HubSpot's CRM as its activity tracker and “system of record” for all
homeowner contact information and communication. Its six account reps spend
their entire day with HubSpot open on their screens, logging information about
each customer call or email inside the HubSpot UL Rather than jump between
several browser windows, Biz1’s six reps would prefer to use HubSpot as a “single
pane of glass” for their workday.

HubSpot is neither an invoicing nor an accounting tool; Biz1's bookkeeper prefers
to use FreshBooks to issue invoices and track payment activity. Biz1’s part-time
bookkeeper doesn’t have enough hours to communicate about the lifecycle of
each invoice, and it would be problematic to give the six reps access to Biz1’s
accounting software.

Yet it's still important for the reps to know when an invoice is sent, viewed, or
paid, as a rep with instant situational awareness can accelerate cash flow and
make Biz1 “look good” by knowing invoice details.

To solve this challenge, the IT admin searches HubSpot’s “App Marketplace.” She
clicks “Get Integration” from the FreshBooks integration directory and launches a
new browser tab, which prompts her to authenticate into both Biz1’s FreshBooks
and HubSpot accounts.

(Two sidenotes: First, FreshBook’s authentication flow is an example of a lesser
but workable alternative to “seamless permissioning,” should your SaaS need to
pursue one. Second, this particular integration also includes a bulk data syncing
of eligible HubSpot customers into FreshBooks, and a corresponding sync of
FreshBooks clients into HubSpot. This contact syncing saves the bookkeeper from
manually entering each new customer profile in FreshBooks.)

Now that the app is enabled, contextual status data about each invoice is
viewable inside the HubSpot UL Alongside each contact record HubSpot provides
a right-most column for its partners to display “CRM Extension Cards,” a series of
small rectangles stacked vertically. One group of CRM cards is branded with
FreshBooks’ logo and displays status updates (i.e. Draft, Sent, Viewed, Paid) for
the five most recent invoices associated with the contact’s email address.

The Activity Timeline will also display a log entry for any invoices created or
payments made.

Fenestra in the Wild:
Once you grok our language and common themes, you'll begin to recognize the
Fenestra pattern as it is practiced in some high-profile SaaS ecosystems. Examples:

Frigg Framework Overview August 2022 v3 Page 7 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Salesforce “Lighting Apps” Notion “Blocks”

Trello “Power-Ups” Front “Plugins”
Airtable “Blocks” Coda “Packs”
Miro “Web Plugins” Pipedrive “App Panels”

After analyzing more than 60+ Fenestra Opportunities, Left Hook has identified two
helpful subtypes:

Subtype 1: Feature Hooks

A Target Platform (TP) designs its “Feature Hooks” to allow an Installed Partner to
expose its data in a limited and structured way via constrained surfaces, and almost
entirely via API. While the TP dictates most display attributes (i.e. location and style),
the Installed Partner chooses what data is displayed.

In the FreshBook/Hubspot example, both Timeline Events and CRM Cards are
Feature Hooks. The Installed Partner (FreshBooks) defined the unique events it
wanted inserted into the user’s timeline, and stipulated the specific data.

The Installed Partner can also add actionable elements like a button to open a
modal or another tab. However, the look/feel of the timeline events are
controlled by HubSpot, as are any UI action elements (i.e. no FreshBooks’ blue
buttons.)

Subtype 2: Open Canvas

A growing number of Target Platforms offer an “Open Canvas” in which the Installed
Partner can display whatever external URL or HTML it chooses, while still leveraging
data from the surrounding record to establish context.

Again HubSpot is a useful example. As a feature of its CRM Extension “cards,” an app
can include a button that initiates a modal window. Inside this window’s four walls the
partner can render any URL, from a simple iframed page to a true Single Page App. If
triggered while viewing a Deal record, deal attributes become parameters to
programmatically change the modal’s display.

For example, Stack Global (a Left Hook client) is software that generates customizable
“playbooks” for sales reps to follow a predictable, measurable sales process. Because
many sales reps live inside the HubSpot CRM all day, Stack wanted to display a sales
playbook inside their “single pane of glass.” The modal's specified view is set by the
deal stage field managed in HubSpot.

Frigg Framework Overview August 2022 v3 Page 8 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Stack’s app offers not just right-column “CRM cards,” but presents a button to trigger
an Open Canvas modal. Inside the modal, the Stack app displays relevant best
practices and prompts the sales rep to follow each prescribed step of the sales cycle.

Achieving Tier 4 and Becoming a Target Platform

Many SaaS leaders dream about their product becoming a Target Platform and asking
(requiring?) their partners to “build to us.” Relatively few companies have achieved this
yet; most are unicorns with +$50 million in ARR (or gobs of VC funding). Building an
app platform requires high-quality engineers and designers capable of designing
bespoke systems to handle partner apps at scale.

To date and to our knowledge, there are no open source tools or frameworks to
accelerate this transition. (Yet).

In Left Hook’s experience, most SaaS companies aren't actually ready to become a
Target Platform. Beyond the technical hurdles, many products just aren't a great fit.

Some ISVs are best suited to being Installed Partners that thrive through marketplace
distribution (i.e. Clearbit or Twilio). Other ISVs are targeted at narrow audiences (i.e.
bookkeeping or payment systems) that are purposefully walled off from a broader
user base.

However, Left Hook believes that more and more Saa$S products will choose to become
a Target Platform over the next decade, especially those that provide a “single pane of
glass” experience to teams needing restricted views into their employer’s data (L.E.
CRMs and CX platforms.)

If you think your SaaS product has the right stuff to become a Target Platform but can't
yet afford the talent to build one, we have good news: Frigg is on its way to becoming
that open source framework the industry needs to accelerate Fenestra Opportunities.

(Let us know if you're interested in exploring the possibilities together.)
How the Hierarchy Informs your Strategy

The hierarchy provides a yardstick your SaaS can use to measure how your product
stacks up against others in its category. Here is Left Hook's general advice about how
the hierarchy should inform your own integration strategy:

1. If your product doesn't yet offer a public & RESTful API, focus there first.
Custom integration development opportunities will always be relevant to
enterprise customers, particularly those in the Fortune 5000 and heavily
regulated industries. A good API leads to good universal integrations too.

Frigg Framework Overview August 2022 v3 Page 9 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

2. Publish a Zapier app (or ask Left Hook to help). Pursue other IPaaS connectors
that match the needs of your customer base.

3. Verify the quality of each “integration” in your competition's library. Get
hands-on and determine which ones are a true UI-Native integration and which
are a Zap Template in masquerade. This assessment will help you decide what
you're actually competing against; their customers eventually recognize the
difference with frustration.

4. Plan and build the Top 15 UI-Native integrations for your category. Be prepared
to serve as both Ringmaster and the Wing depending on the partner.

5. Identify five Target Platforms that will distribute and expose your product to
the right audiences; keep in mind common use cases and the potential for
reusable code/ULl.

Section 3. Technology & Implementation Process

If you've finished Sections 1 and 2 above, you understand the role Frigg might play in
accelerating your many integration opportunities, in the larger context of how this
technology partnership stuff works.

Section 3 explains the framework’s technology, and answers common questions
received from product teams who have evaluated Frigg to date.

Frigg is not:
e A hosted SaaS-like service that bills on a subscription
e An embedded iPaaS (Cyclr, Workato, Pandium, Tray.io, etc.)
e A customer-facing iPaaS (Zapier, Integromat, Celigo, etc)

e Limited to data syncing or workflow integrations

Frigg is a software framework, which means it:
e Is code your SaaS “owns” & controls on your own cloud infrastructure
e Is an open source development tool (i.e. like Wordpress or React.)s)

e Is extensible with custom code, plug-ins, or community additions

Frigg Framework Overview August 2022 v3 Page 10 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Can be customized by competent developers who work in Frigg’s native stack
Accelerates Tier 2 UI-Native integration development
Accelerates Tier 3 “Installed Partner” app development

COMING SOON: Accelerates an ISV’'s journey to becoming a platform, and
asking other partners to “build to us.”

Left Hook is:

Architect and originator of the Frigg Framework

Frigg's lead developer

Professional services team to implement, configure, customize, & deploy Frigg
Expert at +200 APIs, Fenestra dev, and marketplace strategies

Working on an Integration Opportunity (IO) SaaS Platform, a suite of self-serve
tools to help SaaS leaders discover, design, generate, deploy, support, monitor,
market, monetize, improve, measure, and analyze how tech partnerships drive
Saa$ success (coming soon)

Requirements for Adopting Frigg (as of August 2022)

1.
2.

Use of the Serverless.com framework

Hosting via a compliant cloud provider

Use of Node.JS

Use of a GIT provider

Strongly Recommended

1.
2.

Clear internal process and criteria for selecting technical partners

An understanding of your technical partner’s users, use cases, and features (i.e.
product management)

Internal capacity to design and develop your integration frontend

Frigg Framework Overview August 2022 v3 Page 11 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

https://www.serverless.com/framework/docs/providers

4. Internal capacity to understand Frigg's technical requirements and the

5.

long-term responsibility that comes with “owning” Frigg code

Use of Mongo, AWS, Redis, Seed.run, and Upstash

Internal Players Key to Successful Adoption

1.

Senior Product Manager who understands integrations and your partner’s
product

Senior Ul Engineer

Back End Engineer
Deployment/CI/CD/Infrastructure Lead
Partnerships Leader

C-level approval, usually CTO

Frigg Framework Overview August 2022 v3 Page 12 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Important Frigg-Specific Terms

Frigg (Goddess): Frigg is Odin’s wife and the Norse goddess of marriage and
partnerships. She was said to ride a falcon across the skies while weaving the clouds.

Software Framework: From Wikipedia, “In computer programming, a software
framework [provides] generic functionality, can be selectively changed by additional
user-written code, thus providing application-specific software. It provides a standard
way to build and deploy applications and is a universal, reusable software
environment...” Examples of other successful open source frameworks include
React.js, Django, and Bootstrap.

API Modules: Reusable, shareable code chunks that wrap a particular partner’s API to
facilitate its interaction with Frigg. While akin to “connectors” in IPaaS-speak, API
Modules extend beyond basic RESTful functions. They include templated code that
accelerates development of Fenestra Opportunities offered by the partner’s target
platform. Frigg comes with a library of 25+ API modules that include Salesforce,
HubSpot, Stripe, Salesloft, monday.com, Slack, Google Calendar, and many more
commonly integrated B2B Saa$S products.

Logic Blocks: Reusable, shareable code chunks that determine how Frigg orchestrates
specific use cases with data moving in/out via API Modules. Logic built for one set of
use cases can be shared and extended.

Integration Manager: In Frigg's architecture, Integration Managers are where use
cases are orchestrated using different Logic Blocks.

Base Management API: Each Frigg instance includes an API that manages
authentication credentials and stores various configuration options.

Frigg Framework Overview August 2022 v3 Page 13 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

https://en.wikipedia.org/wiki/Software_framework

Section 4: Working with Left Hook

As of August 2022, Frigg is now a fully released and developable open source tool. Left
Hook’s professional services are not strictly required to use Frigg’; in fact, we
encourage and support any developer willing to give it a try.

However, if your ISV needs external support and development resources, Left Hook is
happy to work with you to make Frigg a central part of your complete tech partnership
program.

To get started, we offer “Phase 1 Consulting” to address a list of critical scoping
questions. A senior consultant will help your team think through the technical nuances
and requirements of adopting Frigg. Our team will also perform research and API
testing to guide use case design and selection.

The end result is an actionable build plan that identifies “who does what” between Left
Hook and your product team, tasks with timelines, and a budget for Left Hook's further
involvement.

Once your implementation is planned, Left Hook can provide a range of development
services necessary to configure, deploy, and customize Frigg to your specific
requirements. We can do all the work, some of the work, or be a guide/consultant to
your product team.

Scoping Questions

Even our most sophisticated clients hesitate to answer some of these questions
without first engaging Left Hook to clarify and unpack them. While we attempt to
provide background information and context upfront and in writing, we expect your
product/engineering team will need multiple conversations before arriving at
well-considered decisions.

Question Set 1: Potential Partners, Use Cases, and API Functionality

1. A year from now looking back, what does a successful Frigg implementation
look like to internal stakeholders?

2. Which potential partners are you targeting and why?

3. If you knew a potential partner would refuse any marketing/sales cooperation,
would you still pay to integrate with them?

4. What are the specific use cases and workflows that your common ECAs want in

Frigg Framework Overview August 2022 v3 Page 14 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

a universal integration?

5. Are any use cases applicable to multiple integrations/partners, i.e. “syncing
people/contacts from several CRMs.”

6. Does your existing API support all desired use cases? If not, is your API product
team ready to make improvements soon?

Question Set 2-User Interface (UI)

7. Where is the ECA going to authenticate and configure the integration? Inside
your product’s UI? From your external integration directory page? Or ?

8. Who is responsible for building any required Auth/Config UI?
9. How will the UI leverage Frigg’s Management API?
10. How will Frigg identify your ECOs, ECAs, or Individual Users?
11. How will Frigg authenticate ongoing API requests?

Question Set 3-Infrastructure and CI/CD

12. Which compliant cloud provider will you use?

13. Which default CI/CD tools/services do you prefer?

14. Who will manage deployments, and what process will we follow together?

FAQs
Can Left Hook develop your auth/config UI, too?

Clients often ask if Left Hook can perform the required auth/config UI development.
Our answer is “maybe, but we don't recommend it.” Here's why:

1. Seamless Permissioning should be your goal. To achieve it, an internal frontend
leader needs to get deeply involved, the earlier the better.

2. ECAs overwhelmingly prefer integrations launched from within a native, trusted
UI. While Left Hook will work closely with your team, co-developing UI elements
inside an existing stack is very challenging. In the long run, your users are best
served by a single unified UI “owned” by your product team.

Frigg Framework Overview August 2022 v3 Page 15 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

https://www.serverless.com/framework/docs/providers

3. Left Hook's front end development skills are limited to React.JS. According to the
most recent Stack Overflow Developer Survey, 60% of developers use a front
end technology other than React.

4. Left Hook is not a graphic design or user experience shop. Our backend/
data/API skills will always be our primary focus.

However, Left Hook does provide UI development under limited conditions:
e Using Frigg's library of React.JS components is a requirement
e C(Client must provide a UI design from a graphic/UX designer
e Elements will likely render in modals or tabs, and not your in-page UI
How much internal effort is required to develop an Auth/Config UI?

There's no quick answer to this question. One driving factor will be your existing UL Is
there an existing “Integration Page” with an established auth/config pattern? Is this UI
ready to leverage Frigg? Are your front end developers skilled at working with a
RESTful API?

Another critical factor is the complexity of the use cases, as more configuration
options raise the execution bar.

All told, answering this question requires an extensive discussion between Left Hook
and your product team undertaken in the “Phase 1 Consulting” previously described.

Can Left Hook help your SaaS become an “Installed Partner?”

Absolutely! Building Fenestra Apps is one of our core competencies. We can build
Installed Apps for dozens of marketplaces, including all the obvious ones (HubSpot
Marketplace, Salesforce AppExchange, Google Workspace Marketplace) and many
more.

Given the previous Ul-related FAQs, you might be wondering, “How is it that Left Hook
can build out Fenestra apps but not our Auth/Config UI?” The answer lies in where an
Open Canvas UI element will exist (often outside your core UI and stack), and how it
can be built and served externally (likely using React.JS). These two conditions allow for
Left Hook’s deep involvement in this particular UI development.

Can Frigg power other integration scenarios besides Fenestra? Yes!

Fenestra Opportunities are novel, exciting, and highly valuable investments. But in Left
Hook's recent experience, more traditional Tier 2 data syncing and workflow

Frigg Framework Overview August 2022 v3 Page 16 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

automations remain highly valued by SaaS customers. This is why Frigg enables use
cases across all of our hierarchy tiers.

Frigg outcompetes embedded IPaaS on total cost of ownership and long-term control.
While its Fenestra capabilities help distinguish it as well, Frigg performs and competes
well across the entire integration scenario hierarchy.

What long-term costs and responsibilities come with adopting Frigg?

The good news about Frigg is that your company will end up “owning” the code. The
bad news is that your company will end up “owning” the code. Frigg is not turn-key
hosted software; your product team needs to be deeply involved in its
implementation, operation, and ongoing product management.

However, Frigg's open source system will encourage qualified service providers to
provide outsourced development. Frigg's developer experience (documentation etc),
user community, and service provider network will support Frigg adopters over the
long term- with or without Left Hook's long-term involvement.

Is Frigg right for your SaaS?

Ask your product team if Frigg is right for you- after they've had a chance to read this
overview and our documentation.

Frigg Framework Overview August 2022 v3 Page 17 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

Appendix A: “Integrations: A Brief History of User
Expectations”

Back in the earliest days of B2B SaaS (circa 1995-2005), customers seeking integration
or automation between systems were expected to pay for API access AND hire
expensive custom developers, on top of their subscription fees. This “custom
development expectation” was status quo until well into the 2010s, and persists in
some verticals even today.

The paradigm began to change in 2005 thanks to Salesforce and its AppExchange. Over
the past 15 years, a huge audience of B2B customers learned to love no-code,
self-serve, “app-ified” alternatives. From 20,000 installs in 2005 to 9 million in 2021,
Salesforce convinced a massive number of B2B software buyers that integrations
should be universal, easy to use, and ubiquitous.

The AppExchange's popularity compelled many CRM competitors to build their own
universal integration marketplaces. Many savvy SaaS leaders begin to recognize
universal integrations as a competitive advantage, and copied Salesforce’s playbook.

Within a decade after its launch, hundreds of SaaS companies offered their own “App
Store " or “Integration Marketplace” filled with thousands of self-serve, no-code tools.
B2B buyers began asking about the size and depth of these libraries during the
purchasing cycle, with many deals tipping in favor of the SaaS product that appeared
to be better integrated.

This AppExchange-inspired arms race was a key driver for why SaaS “ate the world” in
the 2010s. The more interoperable and easily integrated a SaaS became, the quicker it
could outcompete older stovepipe systems.

Frigg Framework Overview August 2022 v3 Page 18 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

https://www.salesforce.com/news/press-releases/2021/09/20/idc-salesforce-economy-2021/

Appendix B: iPaaS vs UI-Native

Sometimes these services are known by their acronym “IPaaS.” We prefer to call them
“integration platforms” to avoid confusing acronyms.

To illustrate how an integration platform works, let’s recall one of the examples used
in Section 2, Tier 2.

Imagine that both CoA and CoB are enabled as “public apps” on Zapier. The ECA
for Biz1 logs into Zapier (and not either CoA or CoB) to begin the process of
building a “Zap” i.e. a single workflow instance. After authenticating their CoA
account, they choose to send data from CoA to CoB whenever a specific event is
triggered by any/all of CoA’s Individual Users inside the CoA UI, i.e. “whenever a
Contact’s phone number is added or changed.” The Zapier UI provides several
configuration options as dropdowns and selectable fields.

Many SaaS leaders wonder: is it really “as easy as Zapier” to outsource their
integration headaches? What's the catch?

SaaS leaders enjoy externalizing the cost and hassle of building a self-serve UI and
infrastructure. This costshifting is a rational and efficient choice. But as there’s no free
lunch, the platform expects something in return. For example, Zapier compels most of
its SaaS partners to embed its heavily branded Zap Builder inside their UL. Customers
must register for and pay for a separate Zapier subscription.

In Left Hook's experience, a minority of B2B SaaS customers prefer using external
integration platforms. They find that external integration platforms offer flexibility,
speed, and the ability to to chain workflows together across multiple steps and tools.

However, the majority prefer and expect “UI-Native” integrations that are included in
their subscriptions and configurable from within a familiar and trusted UL.

Many customers resent paying for an additional integration platform subscription.
When compared to a simple, well-designed UI-Native integration, even Zapier feels like
a “yet another software” burden for the user to learn and manage.

Instead, these same customers would rather pay more for their software subscriptions
to get the UI-Native integrations they want. (Our friends at Profitwell analyzed
integration “willingness to pay” and concluded as much.)

All things considered, Left Hook's experience has convinced us that as more
“UI-Native” integrations are promoted via in-app directories and thriving marketplaces,
the more customers will prefer them over an external integration platform. Our

Frigg Framework Overview August 2022 v3 Page 19 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

https://www.profitwell.com/integration-benchmarks

considerable investment in Frigg reflects our conviction that customers want what it
offers.

Frigg vs Embedded White Label IPaaS

A growing number of technology vendors sell “embedded, white label IPaaS.” These
solutions are usage-based subscription tools that provide cloud infrastructure,
reusable logic, and a shared pre-built connector library.

Left Hook is familiar with multiple embedded & white label IPaaS vendors; we've built
dozens of the connectors, which gives us unusual insight into their features and
business models. Several embedded iPaaS vendors make a compelling case, given
their large pre-built connector libraries and “pay as you go” incremental cost.

However, we think all embedded IPaaS competes poorly with the Frigg approach, for

these Mmany reasons:

Business
Model &
Pricing

Integrations:
Breadth and
Depth

Ux
Capabilities

Self-Manageab
ility

Typical Embedded iPaaS

Monthly fixed fee plus
usage-based transaction fees;
multi-year contracts and no clear
transition off-ramp

Broad range of “shallow”
connectors capable of lower and
mid-tier hierarchy use cases; new
connectors and use cases usually
built by the embedded iPaaS
provider

Implementation typically requires
significant frontend dev services
not provided by the iPaaS (though
some offer limited “out of the box”
packaged solutions)

Some providers offer workflow
templating and enablement
implemented by the SaaS owner;
core code and infrastructure
mostly off-limits to customer’s
internal devs; some allow for
self-dev of connectors; many

Frigg

Framework is free. Relatively high
upfront implementation costs, but
long-term “total cost of
ownership” is much lower

Small number of API Modules to
start, but each is built to enable
the full hierarchy of integration
use cases; Left Hook is an API
Module factory at our core, and
can build fast

Total flexibility, from 100%
handled by your team, to 100%
handled by Left Hook's team;
library of React components
speeds development; we support
“UX surface” opportunities that
embedded iPaa$S can't provide

Frigg allows an ISV to manage,
customize, or extend as it wishes.
All code is accessible to your devs
and written in common
frameworks (React, Node.js)

Frigg Framework Overview

August 2022 v3 Page 20 of 21

COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

providers require time-expensive
DIY implementation and
mastering of their platform

Integration Tier 2: UI-Native Tier 2: UI-Native
Scenarios ‘
Enabled Tier 3: Fenestra Apps

Tier 4: Become a Target Platform

HH#

Frigg Framework Overview August 2022 v3 Page 21 of 21 COPYRIGHT LEFT HOOK 2022- ALL RIGHTS RESERVED

